39,063 research outputs found

    Analysis of pion elliptic flows and HBT interferometry in a granular quark-gluon plasma droplet model

    Get PDF
    In many simulations of high-energy heavy-ion collisions on an event-by-event analysis, it is known that the initial energy density distribution in the transverse plane is highly fluctuating. Subsequent longitudinal expansion will lead to many longitudinal tubes of quark-gluon plasma which have tendencies to break up into many spherical droplets because of sausage instabilities. We are therefore motivated to use a model of quark-gluon plasma granular droplets that evolve hydrodynamically to investigate pion elliptic flows and Hanbury-Brown-Twiss interferometry. We find that the data of pion transverse momentum spectra, elliptic flows, and HBT radii in \sqrt{s_{NN}}=200 GeV Au + Au collisions at RHIC can be described well by an expanding source of granular droplets with an anisotropic velocity distribution.Comment: 9 pages, 6 figures, in Late

    Non-equilibrium chemistry and dust formation in AGB stars as probed by SiO line emission

    Full text link
    We have performed high spatial resolution observations of SiO line emission for a sample of 11 AGB stars using the ATCA, VLA and SMA interferometers. Detailed radiative transfer modelling suggests that there are steep chemical gradients of SiO in their circumstellar envelopes. The emerging picture is one where the radial SiO abundance distribution starts at an initial high abundance, in the case of M-stars consistent with LTE chemistry, that drastically decreases at a radius of ~1E15 cm. This is consistent with a scenario where SiO freezes out onto dust grains. The region of the wind with low abundance is much more extended, typically ~1E16 cm, and limited by photodissociation. The surpisingly high SiO abundances found in carbon stars requires non-equilibrium chemical processes.Comment: 2 pages, 1 figure. To be published in the proceedings of the conference "Why Galaxies Care about AGB Stars", held in Vienna, August 7-11, 2006; F. Kerschbaum, C. Charbonnel, B. Wing eds, ASP Conf.Ser. in pres

    Revealing the Archetype: The Journey of a Trecento Madonna and Child at the National Museum of Scotland

    Get PDF
    The National Museums Scotland Madonna and Child project sought to uncover and document the history of a fine polychrome wood carving attributed to The Master of the Gualino St Catherine and to prepare it for display. A new body of knowledge has been assembled by the interdisciplinary team. The conservation treatment was informed by this work and led to further discoveries: the removal of overpaint exposing a previously hidden underdrawing. The ethics of the treatment decisions, including the removal of the Christ Child’s 1960s’ fingers required team dialogue and was opened up for the public to respond to in a series of blogs. The discovery of a rich polychromy including gold and glazed tin has led to further plans to produce a 3-D colour reconstruction. The collaborations developed during this project will facilitate future joint ventures for polychrome sculpture in Scottish collections

    Heavy flavor kinetics at the hadronization transition

    Full text link
    We investigate the in-medium modification of the charmonium breakup processes due to the Mott effect for light (pi, rho) and open-charm (D, D*) quark-antiquark bound states at the chiral/deconfinement phase transition. The Mott effect for the D-mesons effectively reduces the threshold for charmonium breakup cross sections, which is suggested as an explanation of the anomalous J/psi suppression phenomenon in the NA50 experiment. Further implications of finite-temperature mesonic correlations for the hadronization of heavy flavors in heavy-ion collisions are discussed.Comment: 4 pages, 2 figures, Contribution to SQM2001 Conference, submitted to J. Phys.

    Human engineering design criteria study Final report

    Get PDF
    Human engineering design criteria for use in designing earth launch vehicle systems and equipmen

    Review of finite fields: Applications to discrete Fourier, transforms and Reed-Solomon coding

    Get PDF
    An attempt is made to provide a step-by-step approach to the subject of finite fields. Rigorous proofs and highly theoretical materials are avoided. The simple concepts of groups, rings, and fields are discussed and developed more or less heuristically. Examples are used liberally to illustrate the meaning of definitions and theories. Applications include discrete Fourier transforms and Reed-Solomon coding

    Perturbative Wilson loops from unquenched Monte Carlo simulations at weak couplings

    Full text link
    Perturbative expansions of several small Wilson loops are computed through next-to-next-to-leading order in unquenched lattice QCD, from Monte Carlo simulations at weak couplings. This approach provides a much simpler alternative to conventional diagrammatic perturbation theory, and is applied here for the first time to full QCD. Two different sets of lattice actions are considered: one set uses the unimproved plaquette gluon action together with the unimproved staggered-quark action; the other set uses the one-loop-improved Symanzik gauge-field action together with the so-called ``asqtad'' improved-staggered quark action. Simulations are also done with different numbers of dynamical fermions. An extensive study of the systematic uncertainties is presented, which demonstrates that the small third-order perturbative component of the observables can be reliably extracted from simulation data. We also investigate the use of the rational hybrid Monte Carlo algorithm for unquenched simulations with unimproved-staggered fermions. Our results are in excellent agreement with diagrammatic perturbation theory, and provide an important cross-check of the perturbation theory input to a recent determination of the strong coupling αMSˉ(MZ)\alpha_{\bar{\rm MS}}(M_Z) by the HPQCD collaboration.Comment: 14 pages, 8 figure

    Universality in an integer Quantum Hall transition

    Full text link
    An integer Quantum Hall effect transition is studied in a modulation doped p-SiGe sample. In contrast to most examples of such transitions the longitudinal and Hall conductivities at the critical point are close to 0.5 and 1.5 (e^2/h), the theoretically expected values. This allows the extraction of a scattering parameter, describing both conductivity components, which depends exponentially on filling factor. The strong similarity of this functional form to those observed for transitions into the Hall insulating state and for the B=0 metal- insulator transition implies a universal quantum critical behaviour for the transitions. The observation of this behaviour in the integer Quantum Hall effect, for this particular sample, is attributed to the short-ranged character of the potential associated with the dominant scatterers

    Lens Galaxy Properties of SBS1520+530: Insights from Keck Spectroscopy and AO Imaging

    Get PDF
    We report on an investigation of the SBS 1520+530 gravitational lens system and its environment using archival HST imaging, Keck spectroscopic data, and Keck adaptive-optics imaging. The AO imaging has allowed us to fix the lens galaxy properties with a high degree of precision when performing the lens modeling, and the data indicate that the lens has an elliptical morphology and perhaps a disk. The new spectroscopic data suggest that previous determinations of the lens redshift may be incorrect, and we report an updated, though inconclusive, value z_lens = 0.761. We have also spectroscopically confirmed the existence of several galaxy groups at approximately the redshift of the lens system. We create new models of the lens system that explicitly account for the environment of the lens, and we also include improved constraints on the lensing galaxy from our adaptive-optics imaging. Lens models created with these new data can be well-fit with a steeper than isothermal mass slope (alpha = 2.29, with the density proportional to r^-alpha) if H_0 is fixed at 72 km/s/Mpc; isothermal models require H_0 ~ 50 km/s/Mpc. The steepened profile may indicate that the lens is in a transient perturbed state caused by interactions with a nearby galaxy.Comment: 12 pages, 10 figures, submitted to Ap

    Effects of Parton Intrinsic Transverse Momentum on Photon Production in Hard-Scattering Processes

    Full text link
    We calculate the photon production cross section arising from the hard scattering of partons in nucleon-nucleon collisions by taking into account the intrinsic parton transverse momentum distribution and the next-to-leading-order contributions. As first pointed out by Owens, the inclusion of the intrinsic transverse momentum distribution of partons leads to an enhancement of photon production cross section in the region of photon transverse momenta of a few GeV/c for nucleon-nucleon collisions at a center-of-mass energy of a few tens of GeV. The enhancement increases as s\sqrt{s} decreases. Such an enhancement is an important consideration in the region of photon momenta under investigation in high-energy heavy-ion collisions.Comment: 10 pages, 9 figures, in LaTex, revised to include ananlytic evaluation of the hard-scattering integra
    • …
    corecore